Insolubility of the quantum measurement problem for unsharp observables
نویسندگان
چکیده
منابع مشابه
Insolubility of the Quantum Measurement Problem for Unsharp Observables
The quantum mechanical measurement problem is the difficulty of dealing with the indefiniteness of the pointer observable at the conclusion of a measurement process governed by unitary quantum dynamics. There has been hope to solve this problem by eliminating idealizations from the characterization of measurement. We state and prove two ‘insolubility theorems’ that disappoint this hope. In both...
متن کاملEPR-Bell Tests with Unsharp Observables and Relativistic Quantum Measurement
In this contribution I will review the analysis of the Einstein-Podolsky-Rosen argument [19], Bell’s inequalities [5] and of associated experiments for spins in terms of positive operator valued measures (in short: povms). Specifically, I will explore the relation between the Clauser-Horne-Shimony-Holt (CHSH) [16] inequality and a fundamental classicality property of observables – their coexist...
متن کاملCan ‘Unsharp Objectification’ Solve the Quantum Measurement Problem?
The quantum measurement problem is formulated in the form of an insolubility theorem that states the impossibility of obtaining, for all available object preparations, a mixture of states of the compound object and apparatus system that would represent definite pointer positions. A proof is given that comprises arbitrary object observables, whether sharp or unsharp, and besides sharp pointer ob...
متن کاملRemarks on unsharp quantum observables, objectification, and modal interpretations
In this contribution I wish to pose a question that emerged from discussions with Dennis Dieks regarding my talk at the Utrecht Workshop. The question is whether a variant of a modal interpretation is conceivable that could accommodate property ascriptions associated with nonorthogonal resolutions of the unity and nonorthogonal families of relative states as they occur in imperfect or genuinely...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics
سال: 1996
ISSN: 1355-2198
DOI: 10.1016/s1355-2198(96)00012-3